High Resolution Simulations and Microphysical Validation of an Orographic Precipitation Event over the Wasatch Mountains during IPEX IOP3

نویسندگان

  • Brian A. Colle
  • Justin B. Wolfe
چکیده

This paper investigates the kinematic flow and precipitation evolution of a winter storm over and upstream of the Wasatch Mountains (IPEX IOP3) using a multiply nested version of the Pennsylvania State University-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5). Validation using in-situ aircraft data, radiosondes, ground-based radar, and surface observations showed that the MM5, which featured four domains with 36-, 12-, 4-, and 1.33km grid spacing, realistically simulated the observed partial blocking of the 8-12 m s-1 ambient southwesterly flow and development of a convergence zone and enhanced lowland precipitation region upwind of the initial Wasatch slope. The MM5 also properly simulated the advance of this convergence zone toward the base of the Wasatch during the passage of a mid-level trough, despite not fully capturing the westerly wind shift accompanying the trough. Accurate simulation of the observed precipitation over the central Wasatch Mountains (within 25% of observed at all stations) required a horizontal grid spacing of 1.33 km. Despite close agreement with the observed surface precipitation, the Reisner2 bulk microphysical scheme produced too much supercooled cloud water and too little snow aloft. A model microphysical budget revealed that the Reisner2 generated over half of the surface precipitation through riming and accretion, rather than snow deposition and aggregation as observed. Using a snow slope intercept that allows for greater snow concentrations at warmer temperatures improved the snow predictions aloft and reduced the cloud water overprediction. Sensitivity studies illustrate that the reduced surface drag of the Great Salt Lake (GSL) enhanced the convergence zone and associated lowland precipitation enhancement upstream of the Wasatch Mountains. The presence of mountain ranges south of the Great Salt Lake appears to have weakened the along-barrier flow and windward convergence, resulting in a slight decrease in windward precipitation enhancement. Diabatic cooling from falling precipitation was also important for maintaining the blocked flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

7.2a Orographic Enhancement of Precipitation in Midlatitudes: Results from Map and Improve Ii

When midlatitude baroclinic systems move over a mountain range, the precipitation from the system intensifies over and sometimes upwind of the slope of the mountain barrier. The maximum precipitation occurs on the lower windward slopes in almost immediate response to the orographically induced lifting of the air such that the maximum precipitation may occur well below the summit of the range (e...

متن کامل

Orographic Enhancement of Precipitation in Midlatitudes: Results from MAP and IMPROVE II

When midlatitude baroclinic systems move over a mountain range, the precipitation from the system intensifies over and sometimes upwind of the slope of the mountain barrier. The maximum precipitation occurs on the lower windward slopes in almost immediate response to the orographically induced lifting of the air such that the maximum precipitation may occur well below the summit of the range (e...

متن کامل

Orographic Precipitation and Water Vapor Fractionation over the Southern Andes

The climatological nature of orographic precipitation in the southern Andes between 40° and 48°S is investigated primarily using stable isotope data from streamwater. In addition, four precipitation events are examined using balloon soundings and satellite images. The Moderate Resolution Imaging Spectroradiometer (MODIS) images taken during precipitation events reveal complex patterns of upstre...

متن کامل

The Response of Orographic Precipitation over Idealized Midlatitude Mountains Due to Global Increases in CO2

The sensitivity of stratiform midlatitude orographic precipitation to global mean temperature is investigated through numerical simulations. As a step toward understanding the relative influence of thermodynamic and dynamical processes on orographic precipitation, simple idealizations of Earth’s major north–south mountain chains are considered. The individual terrain elements occupy four island...

متن کامل

Observations and Modeling of Banded Orographic Convection

Radar images and numerical simulations of three shallow convective precipitation events over the Coastal Range in western Oregon are presented. In one of these events, unusually well-defined quasi-stationary banded formations produced large precipitation enhancements in favored locations, while varying degrees of band organization and lighter precipitation accumulations occurred in the other tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004